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Received 26 April 1982 

Abstract. Equilibrium configurations of a model for a crystal in one spatial dimension 
with anharmonic and up to third-neighbour harmonic interactions are related to orbits in 
a two- or four-dimensional space under a nonlinear symplectic mapping. In this way a 
connection is given with dynamical systems with two or three degrees of freedom. 
Depending on the parameters the orbits are smooth or stochastic. Their characterisation 
in terms of their fixed points and their Ljapunov exponents is given. The mapping shows 
a large number of bifurcations, of which one can distinguish various types, and these are 
discussed in the present paper. 

1. Introduction 

The problem of stability of dynamical systems has a long history. Since Poincare and 
Birkhoff one has studied the effect of nonlinear perturbations, the perturbed solutions 
and their bifurcations. In the last decade important progress has been made on topics 
such as the existence of invariant surfaces, the transition to chaotic behaviour, the 
occurrence of series of period-doubling bifurcations, etc (Helleman 1980). Here we 
want to deal with a problem of lattice structure that is closely related to dynamical 
systems, although the connection is not immediately obvious. 

Recently we have discussed a model for incommensurate crystal phases (Janssen 
and Tjon 1981, 1982b, the latter to be referred to as I), i.e. crystal phases where the 
positions of the atoms depart in a periodic way from the positions of a regular lattice 
structure, whereas the periodicity of this modulation is incommensurate with the 
underlying lattice. The model is a linear chain of classical particles with harmonic 
short-range (up to  third neighbours) interaction and anharmonic nearest-neighbour 
interaction. If the third-neighbour interaction is absent, the condition that a configur- 
ation of the crystal should form a stationary point for the potential energy can be 
formulated as an area-preserving mapping of the plane. This mapping shows a number 
of interesting bifurcation phenomena which we have studied previously (Janssen and 
Tjon 1982a). In the present paper we discuss the relation between the bifurcations 
and the physical properties of the lattice model and we extend the discussion to the 
case where third-neighbour interactions play a role, which turns out to be of essential 
importance for the occurrence of incommensurate phases. The latter extension leads 
to a nonlinear symplectic mapping in a four-dimensional space. Concerning bifurca- 
tions this four-dimensional mapping has properties not present for the two-dimensional 
one. 

@ 1982 The Institute of Physics 673 
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The potential energy in the model is given by the expression 

(1.1) 2 1  2 2 1  v = C  [ t C U ( ~ n - ~ n - 1 )  - T ( u n - u n - Z )  +iS(un  - u n - 3 )  +a(un--n-1)41 
n 

where U, is the displacement of the nth particle from its position in an equidistant 
array, The choice of the coefficients of the second and fourth terms is not a restriction 
but arises from an appropriate choice of energy and length units. 

The first condition for having a state of minimal energy is the stationarity condition: 
aV/au, = 0. This leads to the following coupled set of nonlinear equations: 

CU(2U" -un-1-u,+1)-2u, +un-2+u, -2  

(1.2) 3 3 +S(2u,  -u,-3-u"+3)+(u,-uu,-1) + ( U , - u n + l ) = O .  

If we introduce the difference coordinates 

X" = U" - u,-1 (1.3) 

then after some arrangement of terms equation (1.2) becomes 

(a  - 2)xn -xn-1 - x n + I  + x i  + s ( 3 x n  + 2 x n  -1 + 2xn+1+ xn-2  + x n s 2 )  

3 
= (CU - 2 ) ~ ,  + I  - X, -x,+z + x ,+I  + S (3x,+l + 2x, + 2xn+2 + X,-I + xn+3) (1.4) 

or 

(CU - 2 + ~ S ) X ,  - (1 -2S)(xn+1 + x n - i )  +x: + S ( . X , + Z  +x,-z) = f  (1.5) 

for some constant f ,  independent of n. 
For S # 0 one can express xntZ in terms of x , - ~ ,  . . . , xnCl via 

x n + z  = (2 - cu - ~ s ) ( x ~ / s )  - (X :/SI -[2 - (1 / ~ ) ] ( ~ n + l +  I n - 1 )  Wxn-2 + c (1.6) 

with c = f/S. In the following we shall restrict ourselves mainly to the case where 
c = 0. Introducing a vector U, in R with components (x ,+~,  x,, x,-I,  x,-z) equation 
(1.6) determines a nonlinear transformation of R4: 

4 

U, + u,+1= sv,. (1.7) 

The character of the transformation can be seen from its linearised form: 

/ A  B A - l \  

\ o  0 1 01 

where A = (1 - 2S)/S and B = (2 -cy - 38 - 3x;)/S. Because the determinant of DS 
is + 1 the transformation preserves volume. Moreover, it is a symplectic transformation 
because it leaves invariant a symplectic form with matrix 

; -; 
0 - 1  0 0  

(1.9) 

Notice that the symplectic form is constant: it does not depend on the position. 
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When S = 0 the recurrence relation (1.5) can be written as a nonlinear transforma- 
tion in the plane R ', because 

(1.10) 3 xn+1=(a-2)xn+x~-x , -1- f .  

If one introduces a vector U,, with components (x,,, x , -~) ,  equation (1.10) determines 
a nonlinear transformation of the form (1.7). Its derivative is given by 

Ds = ( a  -2:3x2 -1) 
0 '  

(1.11) 

Because det(DS) = +l the mapping preserves area and is symplectic (every unimodular 
2 x 2 matrix is symplectic). The cubic mapping (1.10) has been discussed by Janssen 
and Tjon (1982a). It follows that the lattice dynamical problem is intimately related 
to a discrete symplectic transformation. This transformation depends on the two 
parameters a and S and shows, as a function of these, an interesting behaviour, which 
has consequences for the crystal. 

The organisation of this paper is as follows. In § 2 we discuss the character of the 
transformation and of its fixed points in terms of the linearised mapping. The dynamical 
stability of the solutions of the equilibrium equations is related in § 3 to the character 
of the fixed points. In § 4 several orbits of the transformation are discussed to show 
the various invariant manifolds which can be found in this mapping. As a measure 
of the stochasticity of the orbits the Ljapunov exponents are calculated from some 
of the solutions. In § 5 various types of bifurcations are described which occur when 
the parameters are varied. In view of the recent interest in bifurcations in nonlinear 
systems these deserve a treatment on their own. Some concluding remarks are made 
in the final section. 

2. Fixed points of the transformation 

The character of the transformation S in equation (1.7) can be seen from its fixed 
points (FP), i.e. those vectors U for which Su = U, and its cycles, i.e. orbits under S for 
a FP of S". Hence a cycle consists of the N points S"v (n  = 1 , .  . . , N )  where S"U = U. 
Notice that every point of a cycle is a FP for S". The cycles correspond to periodic 
configurations of the linear chain: the solutions of equation (1.5) satisfy x,+" = xn and 
consequently U,,+" = h,, +constant, which describes a dilatation of the chain (deter- 
mined by the constant) combined with a modulation of period N. 

When v is a FP of S" a neighbourhood of u is mapped onto a neighbourhood via 
the linear transformation 

N 
D S N =  n DS,. 

n = l  

For the mapping in R (8 = 0) one obtains the eigenvalues of 

D ~ N  =n(.-21+3x.' ') 
0 

from the equation 

A ' - T A + I = O  
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where T is the trace of DSN. Because T is real the eigenvalues appear in pairs A ,  
A which are both real or both on the unit circle in the complex plane. The eigenvalues 
$ [ T * ( T 2 - 4 ) 1 / 2 ]  are both real if ITI32.  When / T ( > 2  the FP is called hyperbolic. 
When /TI < 2 the eigenvalues are on the unit circle and the FP is called elliptic because 
locally the mapping is an elliptic rotation. When IT1 = 2,  the FP is called parabolic. 
Notice that because of the cyclic property of the trace, all points of one cycle have 
the same eigenvalues. 

For the mapping in R 4  the eigenvalues of DSN satisfy the equation 

A 4 - T A 3 + ~ A 2 - T A + 1 = 0  (2 .4)  

where T is the trace and a the second invariant of DSN. Equation (2 .4)  holds because 
the transformation is symplectic. Because both T and a are real, it follows that if A 
is an eigenvalue then A-' and A *  are also eigenvalues. Hence the FP in R 4  are of the 
following four types: 

(i) there are four complex eigenvalues with l A l #  1: A ,  A * ,  A- ' ,  A*-'; 
(ii) there are four complex eigenvalues with ( A  I = 1: A', A T, A 2 ,  A T  ; 
(iii) there are two complex and two real eigenvalues: A l ,  A T ,  h2 ,  A Y 1  ; l A l \  = 1; 
(iv) there are four real eigenvalues: A1, A T 1 ,  A2,  A T 1 .  

( 1 )  i t isof type(i) i f  T 2 - 4 a + 8 < 0 ;  
( 2 )  it is of type (ii), (iii) or (iv) if T 2  - 4 a  + 8 > 0: 

The character of the FP is determined by the invariants T and U :  

( 2 a )  of type (ii) if L + < 4  and L-  < 4 ,  
(2b)  of type (iii) if L + > 4  and L - < 4 ,  or L + < 4  and L - > 4 ,  
(2c)  of type (iv) if L +  > 4  and L - > 4 ,  

where L ,  = T f ( T 2  - 4 a  + 8)1'2. The motion of points in the neighbourhood of a FP 
is determined by the type of the FP. For a FP of type (i), there is one plane with an 
inward spiralling, and another one with an outward spiralling. For a FP of type (ii) 
the motion consists of two independent elliptic rotations around the FP. For FP of 
types (iii) and (iv) there is a contracting and a dilating manifold, which is of dimension 
one for type (iii) and of dimension two for type (iv). Examples of these motions will 
be discussed in § 4 .  

3. Dynamical stability and character of the fixed points 

Solutions of equation (1.2) correspond to stationary points of the potential energy. 
In order to have a minimum, however, one has to require that the linearised equations 
of motion around a stationary point have only real frequencies. We shall call this 
dynamical stability, in contrast to the stability of a FP of the symplectic mapping. A 
FP is mapping stable if a point near the FP stays so under an infinite number of 
iterations of the symplectic mapping. This happens, in general, when all eigenvalues 
are of absolute value unity, barring exceptional cases when the eigenvalues are e"', 

case) or elliptic (in the R * case). 

configuration {U,} are 

9 . So a FP is, in general, mapping stable, if it is of type (ii) (for the R 4  e2w/3  or e w i / 2  

The linearised equations of motion for small displacements E,, from a stationary 

mEn = ( 2 a - - + f 2 S + ~ n + ~ n + l ) & n - ( a  +Pn+l)&n+1 

- ( a  +Pn)En- l+  E ,  -2 + ~ n + 2  - 8 E n - 3  + SEn+3 ( 3 . 1 )  
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where p,, = 3x2,. One can also view equation (1.5) as the equation for a stationary 
point of the potential 

v = ~ [ : * x ~ + ~ x ~ - : ( x , + x , - l )  2 1  + 2 S ( x , + x , - l + x , - 2 ~ 2 - - f x f l l .  (3.2) 

For small displacements 6, from a stationary configuration {x,} in this potential the 
linearised equations of motion are 

For periodic solutions {x,}, corresponding to a cycle of the mapping S,  the force 
constants in the linearised equations (3.3) have a period N and as a result the solutions 
are of the form 

6, S m ~ + p  = 6, exp[i(km -ut)] (3.4) 

where O s p  < N and O s  k < 2 r .  Analogously the solutions of equation (3.1) are 
E ,  = 

For a vanishing frequency w equation (3.3) leads to the same mapping as equations 
(1.8) in R4 and (1.11) in R 2 .  Hence, if for some value of k the correspondingw(k) = 0, 
one has the relation 

exp[i(km -ut)] in this case. 

A v , , + ~  = (DS)Au, = exp(ik)Au, (3.5) 

which implies that DSN has an eigenvalue exp(ik) and that the corresponding FP is 
of type (ii) or (iii) in R4, or elliptic in R 2 .  Conversely, if DSN has an eigenvalue on 
the unit circle A = exp(ik), then equation (3.3) has a zero-frequency solution with 
wavevector k. Hence a FP is of type (ii) or (iii), or elliptic, if and only if the dynamic 
equation (3.3) has a zero-frequency solution, i.e. if the corresponding configuration 
is unstable. Moreover, it is easily shown that equation (3.1) has a zero-frequency 
solution if and only if (3.3) has or if k = 0. The case of k = 0 corresponds to the 
translational mode which always exists for a crystal with potential energy ( l . l ) ,  but 
not for one with potential energy (3.2). 

The statement that elliptic FP in R correspond to dynamically unstable configur- 
ations has been proved already by Aubry (1977). Its consequences, however, have 
not always been realised. The fact has immediate relevance for our lattice model. A 
configuration with a certain period may become unstable if the frequency of one of 
the eigenmodes goes to zero (a so-called soft mode) as a function of external para- 
meters. It has been shown in I that the parameter CY depends on the temperature. A 
soft mode develops if an eigenvalue of the mapping approaches the unit circle. The 
point on the unit circle exp(ik), where the eigenvalue becomes of absolute value unity 
determines the wavevector k of the soft mode. For S = 0 there is only one pair of 
eigenvalues and the approach towards the unit circle can only happen via the real 
axis and then k = 0 or k = T. For S # 0 this is different for a transition from a FP of 
type (i) to a FP of type (ii). Hence a soft mode with incommensurate wavevector is 
only possible for S # 0. This explains why it is essential in our model to take 
third-neighbour interactions into account. 

The FP corresponding to stable crystal configurations are certainly non-elliptic. 
Elliptic orbits under the mapping never correspond to stable situations. Moreover, 
it turns out that the most stable configurations are extremely unstable under the 
mapping: the points go off to infinity even for very small deviations from the FP. 
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4. Orbits 

4.1. General characterisation 

A Hamiltonian system with m degrees of freedom has a 2m- dimensional phase space 
and a (2m - 1)-dimensional energy surface. A surface of section then has 2m -2 
dimensions. The flow lines of the Hamiltonian vector field determine a discrete 
mapping of the surface of section onto itself which can be compared with our symplectic 
mapping. Here m = 2 for S = 0 and m = 3 for S # 0. If the dynamical system is 
integrable then invariant tori exist which also persist for small perturbations. The 
invariant tori intersect the surface of section as an ellipse or a two-dimensional torus. 
In this way the discrete mapping traces an ellipse in the neighbourhood of an elliptic 
point in R 2  or a torus in the vicinity of a FP of type (ii) in R4. The existence and 
dissolution of invariant tori for a dynamical system with m = 3, with a nonlinear 
coupling between three anharmonic oscillators, have been discussed by Martinet and 
Magnenat (1981), Magnenat (1982) and Contopoulos er a1 (1982). Several of the 
orbits in our problem are rather similar to orbits in those references. 

I -0.L 0 0.4 -0.L 0 0.L -0.L 0 0.4 

Figure 1. Orbit near a FP of type (ii) (a = 0 9, 6 = 1.0) at the origin Projections on 
different planes look quite different ( a )  on x,,, x,+l, (b i  on x,, x,+z, (c)  on x,, x,+3 

Initial point x1 = 0.25, x 2  = 0, x j  = -0.25, x4 = 0.30 

In figure 1 an example is given of the symplectic mapping (1.6) in the neighbourhood 
of a FP of type (ii). It is more difficult to present the orbits in four-dimensional than 
in two-dimensional space. We have chosen a projection on a plane x,, x n - i (  j = 1,2,3).  
The projections of a torus like that in figure 1 may be quite different. Apart from 
these orbits which fill an ellipse (or torus) there are divergent orbits for which S"v 
do not remain in a finite region of space. These orbits do not correspond to physical 
configurations of the crystal and therefore they are omitted. Finally there are orbits 
which are neither periodic (in which case the orbit is finite) nor restricted to a smooth 
curve. In R 2  this may happen in the neighbourhood of a hyperbolic point, where the 
orbit fills a region in space densely. This happens if the hyperbolic orbit is enclosed 
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I 1.2 - in1 

-1*2-- I F  1 7  

-1.2 0 1.2 -1.2 0 1.2 
X n  

Figure 2. Orbits around an elliptic FP (a  = 2.50, 6 = 0). Near the FP the orbits are ellipses 
and smooth, further away they become more diffuse. The diffuse bands connect hyperbolic 
FP which are situated at the intersections of these bands. For the first few hundred 
iterations of the mapping only half of these bands are covered ( a ) .  Only after many 
iterations does the other half also appear (b ) .  The six islands correspond to an N = 6 
elliptic cycle. 

inside an elliptic orbit. It also occurs if one moves away from an elliptic FP so that 
nonlinear effects become important and the invariant tori are washed out (figure 2). 
Enclosure by an invariant torus cannot happen in R4 because a two-dimensional 
torus cannot enclose a region in four-dimensional space (Arnold diffusion). Neverthe- 
less, it may also happen here that an orbit remains in the vicinity of a FP which is not 
of type (ii) (see figure 3). 

~ 

I 8  8 
I 

t - r  -0.5- , -io.40 
-0.5 0 0.5 0.30 0.35 

-0.33 

-0.35 

-0.G 
7 

I C 1  

0.'40 0.30 0.35 O h  

Figure 3. Orbits near FP of types (ii) and (i). [ a )  Orbit around an N = 4 and an N = 3 
cycle, both of type (ii) (a  = 0.876, 6 = 1); ( b )  orbit around one of the N = 4 FP: the orbit 
is a torus (a = 0.876, S = 1); (c )  the FP has become of type (i), but nevertheless the orbit 
remains in the neighbourhood (a  = 0.874, S = 1). 
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The orbit in R which fills a two-dimensional surface is ro t  necessarily a simple 
torus. It may be something quite complicated as in figure 4. It is difficult to determine 
the topology of the latter orbit especially from the projections in figure 4. However, 
by taking sections one can verify that the orbit fills a two-dimensional surface. The 
structure is very distorted, as can be seen from the fact that the projections on two 
different planes are so different. 

0.6 i 0.6 

0.3 

n o  
C 

% 

-0.3 

I 

-0.6 A-- I,--, - 0.6 
-0 6 0 0.6 - 

X n  

I I 1 
> 0 0 6  

Figure 4. Two -dimensional orbit in R 4  (a = 0, S = 1). Projection on two different planes. 
Initial point: x 1  = x 2  = x 3  = x 4  = 0.1. 

If {x,} is an orbit, i.e. a solution of equation (1.5), another solution is found as 
{x I} where 

X I  = X - n + p  (4.1) 

X I  = - x , + p .  (4.2) 

€or some integer p. Moreover, if f = 0 in (1.5) another solution is {x I} where 

The various values of p in (4.1) and (4.2) are simply renumberings of the points of 
the orbit, but, in general, there are four orbits with the same character iff = 0 (otherwise 
there are two). If an orbit is periodic the four cycles have the same eigenvalues. A 
special class of orbits is formed by those which are invariant under one of the operations 
(4.1) or (4.2). Hence one can distinguish four symmetric classes: 

(I) x, = x - , + ~ : .  . . e , d , c ,  b,a,  b , c ,d , e , .  . . , 
(11) x, =x - , ,+~ :  . . . c, b, a, a, b, c, . . . , 
(111) xn = -x - ,+~:  , . . c, b, a, -a, -b, -c, . . . , 
(IV) X, = - ~ - , + 4 :  . . . d, C, b, 0, -b, -c, -d, . , , . 

Numerical calculations, reported in I, show that the configurations with the lowest 
energy always belong to one of these classes. There are, however, also examples of 
solutions of (1.5) which do not belong to one of these classes. Moreover, the classes 
may overlap. Restriction to these families reduces the determination of solutions to 
one- and two-parameter searches, for 8 = 0 and S # 0, respectively. 
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Among the solutions of (1.5) with a certain period N one may distinguish solutions 
with a different number of nodes (2s with s a natural number). For the mapping the 
number s has the meaning of the number of times the orbit goes around the origin: 
it is the winding number. In I it was shown that solutions with period N and winding 
number s correspond to modulations with effective period N / s .  Since an irrational 
number may be approximated arbitrarily closely by a fraction s /N ,  the incommensurate 
structures may be approximated by FFJ with large period N and large winding 
number s. 

4.2. Special solutions 

Equation (1.5) can only be solved analytically for periodic orbits with a small period. 
For larger periods one has to rely on numerical calculations. Since the general 
behaviour of the eigenvalues can already be seen in the small N cases, we shall discuss 
the solutions with N = 1 and N = 2 for f = 0. 

Solution A .  An obvious FP for N = 1 is { x ,  = 0). This orbit belongs to each of the 
four symmetry classes (I)-(IV). For S = 0 one has T = a  -2 ,  for S # 0 T = (1 -2S)/S 
and U = (38  +a -2)/S. The character of this FP as a function of the parameters is 
indicated in figure 5(a) .  The corresponding crystal configuration is an equidistant 
array. 

Solution B. Two other FP with N = 1 are { x ,  = (4-a -9S)”’} and { x ,  = 
-(4 - a - 9S)”’). These orbits belong to the symmetry classes (I) and (11). For S = 0 
one has T = 10 -2a  and for S # 0 T = (1 -2S)/S and U = -2(a + 126 - 5 ) / S .  The 
character of the FP is illustrated in figure 5 ( b ) .  The corresponding crystal configuration 
is again equidistant, however, with a different lattice constant, because U ,  = unWl + x ,  = 
n ( 4 - a  - 9 ~ ) ” ’ .  

Solution C. A solution of symmetry class (I) or (111) with period N = 2 is { x Z m  = 
-xz , , - I  = (-8 -a)”’}. This cycle (with 2 FP of S’) originates from the solution of 
type A along the line a = -8, where the solution of type A has an eigenvalue A = -1 
(see figure 5 ( c ) ) .  

Solution D. Another cycle of length N = 2 belonging to symmetry class (I) is 
{ X 2 m = ~ + d , x ~ ~ + l = c - d }  or { X ~ , , , = C - ~ , X Z ~ + ~ = C + ~ } ,  where c =- , (2+a-3S)  
and d 2  = $(6-S - 138) .  These two cycles (4  FP for S2)  originate from solution C for 
S < $ along a = -2 + 38, and from solution B for S > 5 along a = 6 - 138. The character 
is indicated in figure 5 ( d ) .  Solution B has an eigenvalue A = -1 along the line where 
solution D is created; solution C has an eigenvalue A = +1 along the line where 
solution D originates from it. 

In its turn solution D will give rise to cycles of period N = 4 and this series of 
bifurcations continues. Since this behaviour is interesting in itself, we shall treat it in 
some detail in the next section. 

For values of S tending to zero, all solutions have at least two real eigenvalues. 
Actually, one of these eigenvalues goes to infinity and another to zero, whereas the 
two remaining eigenvalues tend to those for the R ’ mapping. This can be understood 
if one compares the eigenvalue equations for the R’ and the R4 mappings. The 
former is 

2 1  

A ’ - TA + 1 = o T = - 2 - 3 ~ ’  (4 .3 )  
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6 
0 1 0 1 
r ! 1 I 

t l  

1 

U 

0 1 0 1 
I I I 

( C  1 ( d  1 

Figure 5. Type of the FP for some low-period solutions in the a ,  S plane. ( a )  Solution 
A (N = l), (6) solution B (N = l), (c )  solution C ( N  = 21, ( d )  solution D (N = 2) .  For 
6 = 0 the type is indicated by a full line (elliptic), a broken line (hyperbolic with A positive) 
or a dotted line (hyperbolic with A negative). Dynamical stability of a solution is indicated 
by an asterisk. (Solution D is always dynamically unstable.) 

while the latter is 

A 4  -A(A + A )  -BA2 + 1 = ( A  - TA + l ) (A2 - aA + 1) (4.4) 

where a = [1-2S - (a  + 3x2)S]/S, which tends to 1/S asymptotically. Hence the 
solutions of equation (4.4) are the two of equation (4.3) plus A s  = 1 / S  and A 4  = S. 
Hence if the FP in R4 is of type (iii) the corresponding FP in R 2  is elliptic; if it is of 
type (iv) the corresponding one is hyperbolic. 

Another special value is S = 0.5. As can be seen from equation (1.5) the chain 
splits into two uncoupled chains consisting of the particles at the odd and the even 
positions. The two sets of equations are 

(4.5) 

One can rewrite equation (4.5) as a mapping in R 2  if one introduces xZm = 2-1'2ym 
or an analogous expression for the odd chain. Then 

3 
X"C2 = (1 - 2a)x, - 2x " - x,-2. 

(4.6) 
3 

Y m + l =  ( 1 - 2 a ) ~ r n  - Y m  -Ym-1. 
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The difference from equation (1.10) is a minus sign in front of the third-order term. 
If a solution of this equation has a period N ’  = 2n, one can write 

X2” = (-1)”2-”2ym (4.7) 

(4.8) 

and similarly for the odd chain. In that case one has for ym 
3 ~ m + 1 = ( 2 a  - l ) y m + y m - y m - ~  

which is the same as equation (1.10). Hence one obtains solutions to equation (4.5) 
from two even-period solutions of the R 2  mapping for a value cx’=2S +la  The 
solutions of the equations for one subchain (i.e. (4.7) or (4.8)) with small periods NI 
and N 2  are 

A’: ~ 2 ”  = 0 
1 B ’ : x Z m = a  wi tha2=- (cx+~)  

C‘: x Z m  = (-1)”a with a = -(a -5)  
D‘:x4”=a ,  ~ 4 , , , + 2 = b  with a = c + d ,  b = c - d  and c =4(1-2a) ,  d =a(5-2a) .  

Corresponding solutions exist for the other chain. Since one can combine arbitrarily 
solutions of the subchains, the number of solutions for a given period is very large. 
For N = 1, one has the possibilities A’A’ and B’B’, for N = 2 there are A’B’ and B’B’ 
(one subchain with a plus sign, the other with a minus sign), and for N = 4 one can 
have A’C’, A’D’, B’C’, B’D‘, CC’, C’D’, D’D’ (see also the appendix). These solutions 
also persist for S # 0.5, because the solutions depend on the parameters in a continuous 
way. As an example consider figure 6, where an orbit for S = 0.5 is compared with 

2 3 

2 1  2 1  

~ 0.2- 

Figure 6.  Orbits with the same initial point for different values of S (projection is on  the 
x,,x,,,plane). ~ a ) c u = O , S = 0 . 4 5 ; ( b ) c u = O , S = 0 . 5 0 ; ( c ) ~ = 0 , S = 0 . 5 5 .  

orbits with exactly the same initial point for different values of S. The eigenvalues of 
the origin are for S = 0.5 and a = 0: exp($rr), exp($i.rr), exp($irr) and exp($?r). For 
S # 0.5 the formation of a torus is clearly visible. The fact that the figure for S = 0.5 
consists of a straight line and an ellipse reflects the uncoupling of the two subchains. 
For S # 0.5 the orbits are deformed continuously. 
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4.3. Ljapunov characteristic numbers 

It has been shown by Benettin el a1 (1976) that a measure of the stochasticity of 
orbits in a Hamiltonian flow is given by their Ljapunov characteristic numbers. For 
the discrete mapping S one can define these numbers for an orbit {S"u ; n = 1,2 ,  . . .} 
by 

p = lim pn p,, = n - l  Inl(DS")xI (4.9) 
n+cO 

where x is a differential vector in U and I I is the norm of the vector. For Hamiltonian 
flows on a compact manifold, where p is defined as lim{lnlDT'xl/t}, it has been proved 
(Osseledec 1968) that this limit exists and takes one of a finite number of values. 
Moreover, for almost every vector in the tangent plane the limit is the maximum of 
those values. Benettin er a1 (1976) have given numerical evidence for the Henon- 
Heiles model that p = 0 for an orbit in an ordered region and that p tends to a constant 
in a chaotic region. Moreover, this constant depends only on the energy. Contopoulos 
et  a1 (1978) find strong indications that the constant to which p tends also depends 
on the number of isolating integrals. This same result has also been found by Magnenat 
(1982) and Contopoulos et a1 (1982). 

We have used the same characterisation for orbits under the discrete mapping. 
For an orbit of period N the Ljapunov characteristic number (LCN) is related to the 
largest eigenvalue (in absolute value) of the mapping DSN. If a cycle is elliptic or of 
type (ii) the eigenvalues are on the unit circle and p = 0. For a hyperbolic cycle or a 
cycle of type (i), (iii) or (iv) pn tends to Ih 1::. 

For a non-periodic orbit the LCN is a measure of the ordering. In general, p,, 
behaves asymptotically as 

p,, An-= (4.10) 

for some constant A and for a non-negative exponent L. We have calculated p n  for 
a number of typical orbits (figures 7 and 8). For an ordered orbit such as the ellipse 

10-5 1 , , , , , , , , ,  , , , , , , , , ,  , , , , , , , , ,  

IO2 io3 10 10 
n 

Figure 7. Ljapunov characteristic numbers for some typical orbits. A, hyperbolic FP, 
a =-0.05, 6 = 0 ,  U = ( O , O ) ;  B, toroidal orbit of figure 4, a =0.90, 6 = 1, U = 
(0.1,0.1,0.1,0.1);C,chaoticorbit of figure 2, a = 2 . 5 ,  S=O, v=(0.74,0.74);  D, orbit 
of figure 14, a = 0.96, S = 1, U = (-0.201,0.01,0.201,0). 
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P n  

, , , I , , , ,  I I , , , , , ,  , I , , 1 1 1 1 1  

IO2 i o3  10 i o 5  
n 

Figure 8. Ljapunov characteristic numbers for some orbits very close to each other at 
a = 0.99, S = 0. A, near a hyperbolic point, U = (1.005, 1.005); B, ordered orbit, L' = (0.92, 
0.92); C, chaotic orbit, L: = (0.909, 0.909). 

of figure 2 ( a )  or the torus in figure 1, pn tends to zero with L = 1. The behaviour of 
the LCN for the orbit of figure 4 favours the assumption that the orbit covers a 
two-dimensional surface. For a stochastic orbit such as the one in figure 2(b) ,  the 
LCN tends to a constant. This also happens for an orbit which passes close to a 
hyperbolic FP under the condition that the orbit remains finite. An interesting type 
of orbit is the diffuse one in figure l l ( 6 ) .  For this orbit p,, tends to zero but L -0.35. 
Presumably this orbit is not volume-filling but covers a lower-dimensional manifold. 
It turns out that a stochastic orbit often tends to infinity after many iterations. The 
point where the orbit breaks off is strongly influenced by rounding off errors and 
hence depends on the machine accuracy used. 

Just as for the continuous mapping the convergence of pn is not always monotonic. 
Especially in regions where ordered and disordered orbits are close to each other 
there are strong deviations from monotonic behaviour, even though p n  tends to zero 
with a mean exponent of L = 1. The picture becomes extremely complicated in these 
regions. As an example consider orbits near a hyperbolic N = 4 FP for a = 0.99, S = 0 
(figure 8). Ordered orbits starting from U = (0.92,0.92) or (0.94,0.94) are separated 
by chaotic orbits from (1.005, 1.005) and (0.91,0.91). Moreover, very close to the 
latter there are again ordered orbits around cycles with N = 40 and N = 48 starting 
from (0.903,0.903) and (0.917,0.917), respectively. Hence the LCN can change very 
rapidly. There is also a pronounced difference in behaviour in p,, for the two orbits 
of figure 3. 

The smoothness of an orbit can also be characterised by its dimension. To 
determine the (local) dimensionality one calculates the number n(1)  of points of the 
orbit inside a sphere of radius 1 as a function of this radius. One can then define the 
dimension d from n ( I )  = constant x I d .  For a smooth curve in R 2 ,  such as the ellipse 
in figure 2, one obtains d = 1 in this way, and d = 2 for a torus in R4. This is also 
the case for the orbit in figure 4, which proves once more that this orbit covers a 
two-dimensional surface (figure 9). For stochastic orbits the slope of ln(n (I)) against 
ln(Z) is, in general, not a natural number. It should be noticed that for small values 
of I ,  the number of points inside the sphere is too small and the errors too large; for 
large values of I the global structure starts to be of importance. In the intermediate 
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6 8 10 12 
In ( i o 5  i 1 

Figure 9. Number n ( I )  of points of an orbit inside a sphere with radius I :  the slope 
determines the dimension of the orbit. A, orbit of figure 4;  B, orbit of figure 8 i b ) ;  C, 
orbit of figure 8 ( a ) ;  D, orbit of t = (-0.201,0.01,0.201,0), a =0.96,8 = 1 in figure 14(b). 

region, however, the curve should be a straight line with a slope independent of the 
number of iterations in order to have a meaningful definition of d. Examples are 
given in figure 9. Curves B and C correspond to the orbits for which the Ljapunov 
exponents are given in figure 8. Their slopes are d = 0.5 and d = 1.1, respectively. 
The curvature of the right-hand side is caused by new global features entering the 
sphere (approximately 10 for ln(1061)). The curve correspondirg to the diffuse orbit 
in figure 14(6) has a slope significantly steeper than two, but due to the remaining 
curvature it is difficult to assign a dimension to this orbit. 

5. Bifurcations 

5.1. Types of bifurcations 

For a > 1 + 1/46 the N = 1 FP {x,, = 0 )  has four complex eigenvalues with A = 1. So 
apart from the translation mode, the corresponding lattice configuration does not have 
a zero-frequency phonon. Explicit calculation shows that w 2 > 0 ,  so that the basic 
configuration is stable. If the parameters a and S are changed, the eigenvalues move 
in the complex plane. For a fixed and 6 tending to zero two eigenvalues become 
zero and infinite while the other two are then given by the eigenvalues of the 
corresponding linearised mapping in R Z  for S = 0. The FP is hyperbolic with A > 0 
for a > 4, elliptic for 0 < a < 4 and hyperbolic with A < 0 for a < 0. For 0 < S < a  the 
four eigenvalues reach the real axis for a = 1 + 1/48. One pair moves towards A = +1, 
which is reached for a = 4 - 96. Below this line there are two eigenvalues of modulus 
one and the basic configuration (x, = 0) is unstable. This means that for O<S < a  a 
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soft mode develops with wavevector k = 0. For S > d  the eigenvalues move towards 
the unit circle which is reached at A = exp(ik) with cos k = (1 -2S)/4S. Therefore in 
this case there is a soft mode with wavevector k. 

At the point where the basic configuration becomes unstable, the FP {x, = 0) 
bifurcates: for S < d two FP with N = 1 (solution B) branch off, both corresponding to 
a stable crystal configuration; for S > d two cycles branch off. If k = 27rs/N, these 
cycles have period N. One cycle is of type (iii) and corresponds to an unstable 
configuration, the other is type (iv) and corresponds to a stable crystal configuration 
with period N. Since the winding number is s, the stable crystal structure is a modulated 
one with modulation wavevector 21rslN. 

The branching off of new cycles at Q = 1 + 1/48 is only the first in a long series of 
bifurcations. Because these bifurcations can give rise to new stable configurations, 
they are of importance for the dynamics of the crystal. Therefore we shall study them 
in some detail. Moreover, in view of the recent interest in bifurcations (Feigenbaum 
1978, 1979, Eckmann 1981, Collet and Eckmann 1980), particularly in connection 
with turbulence problems, they deserve studying for their own sake. 

Bifurcations for one-dimensional maps (Feigenbaum 1978, 1979, Collet and 
Eckmann 1980) and, to a lesser extent, for area-preserving and dissipative two- 
dimensional maps (Bountis 1981, Greene et a1 1981, Collet and Eckmann 1981) have 
already received a lot of attention. In R' the subject of volume-preserving maps is 
even richer. Broadly speaking, one can distinguish two classes of bifurcations: those 
for which a cycle branches off from, in general, one of smaller period while the latter 
changes its character, and those for which the parent cycle does not change its 
character. 

Type ( a ) .  Two eigenvalues come together at A = +1 and a new cycle with the 
same period appears. An example is the N = 1 FP {x, = 0 )  for S < i ,  For CY = 4 - 98 
two eigenvalues collide at A = +1 and two new FP (solution B) with N ' =  1 start from 
this one. Another example is the N = 2 FP (solution C )  for S = 0. It is elliptic for 
-2 <CY < 0.  For CY decreasing from 0 to -2 the eigenvalues move along the unit circle, 
pass through each other at A = -1 and collide again for CY = -2. For this value two 
new elliptic FP with N = 2 branch off (solution D). The behaviour of the eigenvalues 
is illustrated in figure 10(a). 

l b )  I C )  
( 0 )  

Figure 10. Change of the eigenvalues for bifurcations of types ( a i ,  ( b )  and ( c ) .  

Type ( b ) .  For this type two eigenvalues of a cycle of period N collide at A = -1 
and leave the unit circle along the real axis and a new cycle of period N '  = 2N is 
created. This type of period-doubling bifurcation has been studied extensively, for 
both one- and two-dimensional maps. An example is the N = 1 FP {x, = 0). If 6 = 0 
the eigenvalues move along the unit circle for O<CY <4. For CY = 0 they collide at 
A = -1. The FP becomes hyperbolic and a new N = 2 cycle (solution C) is created 
(figure 10(b)). 

Type (c). In R4 it may happen that the eigenvalues leave the unit circle for A # *l. 
The two pairs of eigenvalues collide and go off into the complex plane (figure lO(c)). 
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If this happens for A = e x p ( 2 ~ i s / p )  the original cycle of period N gives rise to two 
new cycles with period N '  = pN. An example is the N = 1 FP { x ,  = 0 )  in the case 
where, for example, S = 0.25. For a > 2 the eigenvalues are complex and not of 
modulus one. For a = 2 they reach the unit circle at A = exp(&ri) and move, for a < 2 ,  
along the unit circle. Then DS6 has four eigenvalues +1 for a = 2. For a < 2 there 
are two cycles of period N = 6, one of type (iii) (unstable configuration) and one of 
type (iv) (stable crystal configuration). 

Type ( d ) .  For the preceding three cases the character of the parent cycle changes 
at the bifurcation. This is not so for a Birkhoff bifurcation, where a pair of eigenvalues 
moves along the unit circle and stays there. If the eigenvalues are exp(*27ris/p), new 
cycles of period N'=pN may originate from the parent cycle of period N. If the N 
cycle is of type (ii) the two new cycles are types (ii) and (iii). If the N cycle is of type 
(iii), the new N' cycles are of types (iii) and (iv). In R2 an elliptic N cycle leads to an 
elliptic and a hyperbolic N' cycle. An example is the N = 1 FP for S = 0. For a = 2 
its eigenvalues are +i and 4. For a < 2 an elliptic and a hyperbolic N'  = 4 cycle 
appear, both of which move away from the origin. The eigenvalues of the hyperbolic 
N' cycle move along the real axis starting from A = +l. The eigenvalues of the elliptic 
cycle move along the unit circle, also from A = +1. In its turn the elliptic cycle may 
give rise to new cycles. For a = +1 the eigenvalues leave the unit circle at A = +1 
and a bifurcation of type ( a )  takes place. The situation for a = 0.99 is shown in figure 
11. The origin is still an elliptic FP. The four islets outside the elliptic orbits correspond 
to the four FP of the N ' = 4  cycle. They have just turned hyperbolic and in their 
neighbourhood there are the eight points of two elliptic N ' = 4  cycles (figure l l (6) ) .  

Type ( e ) .  A second type of bifurcation for which the character of the parent cycle 
does not change is what we have called 'inverse bifurcation'. Strictly speaking, it is 
not a real bifurcation. A cycle of period N has two eigenvalues on the unit circle. 

-1.5 -0.5 0.5 1 . 5  0 .9  1.0 1.1 

X n  

Figure 11. Bifurcations of types ( d )  and (a )  (situation for a = 0.99, 8 = 0). ( a )  FP at origin 
is elliptic, the four islets centred around the FP of an N '  = 4 cycle, created at CY = 2, have 
become elongated. ( b )  One islet shows one N ' = 4  FP in the centre that has become 
hyperbolic at CY = 1 and two elliptic N '  = 4 FP created at CY = 1. 
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For a = c y 1  these are exp(*2ds/p). For that value of a the N cycle absorbs and 
re-emits a cycle with period N' = pN which was born for a = ( ~ 2 .  We have called this 
inverse bifurcation because the birth of the new cycles takes place beforehand. The 
rather complicated development can be illustrated by the example given in figures 
12(a)-(f). The parent cycle has period N = 3. For cy1  = 0.09144. . . its eigenvalues 

a=0104 

1 2 -  l a )  11 
I 

i 
0.61 

-b 01 -4 

a= 0 104 a = 0 100 

i 

i . .  

I ' \ >  

,081 , 1 , 
0 0 1  - 0 1  0 0 1  

a:0095 a 0 090  a.0083 

Figure 12. Inverse bifurcation. ( a )  Three islets around an elliptic N = 3 cycle; ( b )  in the 
vicinity of one N = 3 FP three hyperbolic and three elliptic FP with N ' =  9 appear; (c) the 
hyperbolic FP approach the N = 3 FP, the elliptic ones move away; (dl the hyperbolic FP 
nearly collide; ( e )  the hyperbolic FP bounce back, the islets around the elliptic N'  = 9 FP 
become deformed; ( f )  in the vicinity of each elliptic N' = 9 FP three hyperbolic and three 
elliptic FP with N ' =  27 appear. (6 = 0 in all cases, a is shown.) 

are exp(&ri) .  In its neighbourhood two new cycles with period N' = 9 are born for 
c y 2  = 0.1043 . . . : an elliptic one and a hyperbolic one (figure 12(a)). The hyperbolic 
cycle moves towards the N = 3 cycle in R 2  and reaches it for a =a1. Its eigenvalues 
are +1 for a1 and a2. At a = c y 1  the two cycles coincide. Then the hyperbolic one 
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bounces back and moves away from the parent cycle. The elliptic N' = 9 cycle also 
moves away from the N = 3 cycle. Its eigenvalues run along the unit circle, starting 
from A = +l, For a = a i  = 0.08198.. . they are again exp(*$.lri). At that point it 
coincides with a hyperbolic N "  = 27 cycle created together with an elliptic one at 
a = ah = 0.0833 . . . . The formation of the N" = 27 cycle is seen already in the form 
of the N ' =  9 orbit (figure 12(e)): the ellipse develops three protrusions. In figure 
12(f) the N "  = 27 cycles have already been formed. The story is then repeated. 

5.2. Examples 

Only bifurcations of type (c) are restricted to the four-dimensional mapping. The 
other four types do occur also in R 2  and for simplicity of presentation we have taken 
the examples from R 2  cases. To show that all types also occur for S # 0 we consider 
two other series of bifurcations. 

As a first case we consider a series for S = 1 starting from the N = 1 FP of solution 
A. The behaviour of the eigenvalues is illustrated in figure 13(a). For a > 1.25 the 

( a 1  ;2.;+0+0+().(3 # - "+(yJ+;2 
' c l  n ii 0 0' [.,O (-J.o>o> 

2.0 (stable) 1.25 1.0 -1.0 - 5.0 

*'>d++U' .' l b )  

-5.0 -7.0 -8.0 -8 .125  -9.Oistable) 

1 0 .075  0.8 (s tab le )  1 0 -2.7 ... - 3  

( e )  (3 i3 0; (,+);:> ~ - > . \ ~ > ~ - >  

b 
1 0.6468 0.5(stableI  1 -1 -1.01 -1.5 

Figure 13. Change of the eigenvalue for some FP for varying a (6  = 1). ( a )  The origin 
is an N = 1 FP; ( b )  solution E3 (N = 1); ( c )  the N = 4 FP of type (ii); ( d )  the N = 4 FP of 
type ( i i i ) ;  ( e )  the N = 3 FP of type (ii); ( f )  the N = 3 FP of type (iii). The N = 3 and N = 4 
FP are created at a = 1. (Arrows in i d )  and ( f j  indicate large, real eigenvalues; 'stable' 
means dynamically stable.) 

crystal is dynamically stable and the FP is of type (i). For a < 1.25 the eigenvalues 
move along the unit circle, one pair clockwise, the other anticlockwise. For a = 1 the 
eigenvalues are *i and exp($.lri). At this point four new cycles start: two with period 
4 and two with period 3 (figure 14). The bifurcation is of type (d). For a = -1 two 
eigenvalues collide and leave the unit circle at A = -1, whereas the other two are 
exp(*f.lri). For this value of a a bifurcation of type ( b )  takes place (figure 14) that 
gives rise to an N' = 2 cycle (solution C), simultaneously with a bifurcation of type 
(d) that gives four N' = 6 cycles (one of type (i), one of type (ii) and two of type (iii): 
this is a situation where the minimal number of cycles does not appear). The two 
remaining eigenvalues of modulus one of the N = 1 FP collide at a = -5  in A = +1 
and leave the unit circle. For a < -5  the origin is a FP of type (iv) and two new N' = 1 
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Figure 14. Creation of an N'= 3 cycle and an N ' = 4  cycle at a = 1, S = 1. (a )  Sharp 
torus around the origin, three invariant curves around each "V' = 4 FP; ( b )  the islets around 
the N' = 4 FP move away; the diffuse band connects the FP of type ( i i i ) ;  the tori are around 
those of type (ii); (c )  the N '  = 3 FP created at a = 1 are also surrounded by a finite torus 
(nearly a cylinder), all FP move away. (S = 0 in all cases, a is shown.) 

FP appear (solution B). This is an example of a bifurcation of type (a ) .  The FP of 
solution B starts as type (iii) and its eigenvalues behave in exactly the same way as 
those of solution A, but in reverse order (figure 13(b)). The dynamically stable 
configurations of period 1 are solution A for a > 1.25 and solution B for a < -8.125. 

The evolution of the N = 3 and N = 4 cycles born at a = 1, S = 1 is illustrated in 
figures 13(b) ,  (c), ( d )  and (e) .  The first N = 4 cycle is of type (ii) for 1 >a  > 0.875. 
For a <0.875 it is of type (i) and the corresponding configuration is dynamically 
stable. The other N = 4 cycle is of type (iii) for 1 > a  > -2.7 . , . . At a = -2.7 . . . it 
changes to type (iv) but the corresponding crystal configuration remains unstable 
because there is a whole phonon branch with imaginary frequencies. The same happens 
to the N = 3 cycles. One starts as type (ii) and changes to type (i) at a = 0.6468 . . . , 
whereupon the crystal configuration becomes stable. The other remains unstable. 
Notice that for a = -1 there is a bifurcation of type ( 6 )  from the N = 3 cycle to an 
N' = 6 cycle, whereas for the same value of a there is a bifurcation of type ( d )  from 
N = 1 to N' = 6. However, the. two N' = 6 cycles are, of course, different (they have 
winding numbers 2 and 1, respectively). Another bifurcation near the same value 
of a (-1) is of type ( d ) .  It can be seen in figure 15, where the ring at a = -0.99 has 
condensed to orbits around an N' = 23 cycle. This shows once more that constantly 
new cycles are born if a decreases. 

An example of a bifurcation of type ( e )  for S # 0 is the bifurcation of solution C 
( N  = 2) for S = 0.25. This cycle is created at a = -0.25 for which value it has a double 
eigenvalue A = +1  (it is of type (iii)). If a decreases two eigenvalues move along the 
unit circle, become degenerate (A = -1 for a = -1.25) and continue along the unit 
circle. For a = -1.25 the cycle coincides with an N ' =  4 cycle of type (iv) created at 
a = -1.0997 . . . together with an N ' =  4 cycle of type (iii). The development of the 
two N' = 4 cycles is given in table 1. The cycle of type (iii) moves away and also in 
turn has a period-doubling bifurcation. 
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Figure 15. Simultaneous bifurcations of various types for a = -1, S = + l .  ( a )  The origin 
is an elliptic FP ( a  = -0.99, S = 1);  ( b )  the FP in the origin has become hyperbolic, an 
N = 2 elliptic cycle has branched off, as well as four N = 6 cycles of which one of type 
iiii) is shown; the annulus has condensed to tori around the FP of an N = 23 cycle 
(a = -1.01, 6 = 1). 

Table 1. Two N = 4 cycles created together for a = -1.0997 . . . , 5  = 0. The configurations 
are x, = ( a ,  -a, a, b ) .  

First N = 4 cycle Second N = 4 cycle 
- 

ff a b  A i  A 3  Type ff a b  A I  A 3  Type 

-1.1 0.77 1.17 0 . 8 3 i  15.5 (iii) -1.1 
0.56i 

-1.1034 0.74 1.19 -1 19.6 - -1.107 

-1.25 0.59 1.36 -39.8 51.8 (iv) -1.175 

-1.2 
-1.25 
-1.30 

-1.303 
-1.5 

0.78 1.16 1.76 14.7 (iv) 

0.81 1.14 7 . 6 6 i  ( i )  

0.93 1.11 4.39* (i) 

0.96 1.03 2.39 4.34 (iv) 
1 1 114x1 - 
1.04 0.98 -0.8 * 2.08 (iii) 

0.6i 

1.17 0.91 --21.2 12.2 iivi 

1.16i 

0.45i 

1.05 0.97 -1 2.6 - 

The creation of new FP is limited by a conservation law. Suppose t' is an isolated 
FP of the transformation S. Then on the boundary aR of neighbourhood Cl of U 
a vector field is determined by f ( x )  = Sx - x. On dCl this vector field does not have a 
zero. The topological index of this vector field (Sattinger 1973) does not depend on 
an, as long as no FP crosses the boundary. Since the FP depend smoothly on the 
parameters a and 6,  this integer is a constant. Moreover, if there are n FP inside an 
the index is just the sum of the indices for the n FP. The index of a FP can be calculated 
using 

(5.1) (f, U 1 = sgn(det(afi/axj)) 
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or, in terms of the quantities T and a, 

i(f, v )=sgn(2 -2T+a) .  (5.2) 

For the mapping in R 2  the index is +1 for an elliptic FP or for a hyperbolic FP with 
negative eigenvalues; it is -1 for a hyperbolic FP with positive eigenvalues. In R4 
the index is +1 except when the FP is of type (iii) with positive real eigenvalues or of 
type (iv) with two positive and two negative eigenvalues. In these latter cases the 
index is -1. Because the index is a constant it does not change at a bifurcation: 
the sum of indices of the FP in a neighbourhood is the same before and after the 
bifurcation, as long as the new FP do not cross the boundary. This is the same reasoning 
as used in the discussion of the Hopf bifurcation (Sattinger 1973). 

In R 2  for a bifurcation of type ( a )  this implies that an elliptic FP may only become 
hyperbolic (with positive eigenvalues) if, for example, two hyperbolic FP are annihilated 
or two elliptic FP are created. For a bifurcation of type (6) the index does not change, 
but as FP for S 2  the index changes from +1 to -1. This implies that two N = 2 elliptic 
FP (one two-cycle) have to be created. For bifurcations of types ( d )  and (e) of order 
p the index does not change either, not even for S p .  This means that p elliptic FP can 
only appear together with p hyperbolic ones (an elliptic and a hyperbolic p cycle), or 
that a hyperbolic FP of order p exists before and after the bifurcation (collision of FP). 

In R4 the conservation law allows the following possibilities. 
Type ( a ) :  (ii) + (iii) + 2(ii); (ii) + 2(iii) + (iii); (iii) + (iv) + 2(iii); (iii) + 2(iv) + (iv) 

Type ( b ) :  the same as type ( a )  under S2.  
Type ( c ) :  (i) + (ii) +p(iii) +p(iv) (under S p ) .  
Type ( d ) :  (ii) + (ii)+p(ii) +p(iii); (iii) + (iii) +p(iii) +p(iv) (under S p ) .  
Type (e): (ii)+(ii)+p(ii)+p(iii) followed by (ii)+p(iii)+ (ii)+p(iii); (iii)+ 

(under S ) .  

(iii)+p(iii)+p(iv) followed by (iii) +p(iv)+ (iii) +p(iv) (under S p ) .  
These possibilities have been illustrated above by examples. 

6 .  Concluding remarks 

We have studied here discrete symplectic mappings in R 2  and R4. Due to the fact 
that these mappings have their origin in a model for equilibrium configurations of a 
one-dimensional crystal, these mappings are not the simplest conceivable. In the first 
place they are cubic, in contrast to the quadratic mapping usually studied in R 2 .  This 
has implications for the motion of eigenvalues of the linearised mappings: in particular 
it gives rise to bifurcations where the period of solutions does not change. Furthermore, 
the four-dimensional mapping is singular in the parameter 8 :  for S = 0 the four- 
dimensional mapping is not defined, but then a two-dimensional mapping exists. 
Moreover, the two eigenvalues of the latter are the limit of two of the four eigenvalues 
in the four-dimensional mapping. Another limit is S + 03, because then the nonlinear 
terms become relatively less important. 

The orbits under the symplectic mapping correspond to equilibrium crystal 
configurations, which are not necessarily dynamically stable. It turns out that there 
is a remarkable duality between the stability of a periodic orbit under the mapping 
and the dynamical stability of the crystal: if all the eigenvalues for the orbit are on 
the unit circle (a condition for mapping stability) the crystal configuration is unstable 
and, conversely, if the crystal is dynamically stable there are no eigenvalues for the 
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mapping on the unit circle. This has not always been realised: in the literature 
sometimes it is implicitly assumed that elliptic orbits correspond to stable physical 
configurations. 

If the orbit traces a smooth curve (in R 2 )  or a smooth surface (in R4), the Ljapunov 
exponent is zero. This implies that for such an orbit the differentials & form a solution 
of equation (3.3) with zero frequency. Since the Ljapunov exponent is zero the values 
for &,, are bounded and they correspond to a physically allowed displacement field. 
Hence for a smooth orbit, corresponding to a configuration without finite periodicity, 
there is a zero-frequency mode besides the acoustic one. Because of the vanishing 
of the Brillouin zone this does not necessarily mean that the configuration is unstable: 
the zero-frequency mode can be a phason mode. 

If an eigenvalue of a linearised mapping approaches the unit circle, the correspond- 
ing crystal shows a soft mode. If there are interactions with first and second neighbours 
only, this soft mode appears in the centre or at the boundary of the Brillouin zone. 
As a consequence, in order to have a soft mode with incommensurate wavevector, 
interaction with third neighbours is essential. 

In some of the bifurcations studied, two of the four real eigenvalues remain close 
to +1 for a fairly large a interval. A special case is the orbit of period N = 3 for c # 0 
such that Exn = 0. In this case there are, independent of a, two eigenvalues equal to 
+l. For the crystal this means that for k = 0 there is, besides the acoustic mode, 
another mode with frequency exactly equal to zero. It can be interpreted as a phason 
mode: the displacements can be described as shifts in the phase of the modulation 
function. If the energy of the equilibrium configuration does not depend on the phase, 
there is a point-wise invariant line under S N .  

It turns out that all stable crystal configurations correspond to orbits which are 
created at the origin. Sometimes these start as dynamically unstable and become 
stable only at a certain distance from the origin. The eigenvalues of the corresponding 
orbit always have an absolute value not equal to one and the orbits are very unstable: 
even a very small deviation leads to an unbounded (unphysical) orbit. For low enough 
values of the parameter a there is an infinite number of stable equilibrium configur- 
ations. 

It should be stressed that there are several roads to stochasticity in the regions of 
R 2  and R4: in the first place there are geometric series of bifurcations (Feigenbaum 
sequences) which lead to an infinite number of periodic orbits arbitrarily close to a 
parent orbit; in the second place there are simultaneously a large number of bifurcating 
families such that there are regions densely filled with periodic orbits of all kinds. 

The multidimensional mapping has many bifurcation features in common with the 
two-dimensional one. In addition bifurcations are possible where pairs of eigenvalues 
collide and leave the unit circle. As a consequence, a series of bifurcations may not 
continue indefinitely but may break off for some period. 

The picture arises of an ever-continuing network of bifurcations with increasing 
density. In fact the R Z  and R 4  get an infinite number of cycles in a finite region of 
space. Among the many bifurcations some behave in a regular way as geometric 
series. These will be the subject of a forthcoming paper. 

The ever-increasing number of solutions has important consequences for the 
properties of the crystal. The large number of stable equilibrium configurations leads 
to a slowing down of the approach to equilibrium, especially so if a stable configuration 
is surrounded by the very large number of solutions created in a bifurcation series, 
because these solutions remain in the neighbourhood due to the geometric character. 
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Because the orbits bifurcated from one single orbit are, in general, only metastable 
or even unstable, we do not expect that those ‘irregular’ crystals, i.e. modulated 
crystals with a large number of modulation vectors, correspond to stable configurations. 
This is in contrast to a recent proposal by Ruelle (1982). 

Appendix 

For S = 0.5 the recurrence relation (1.6) reduces to (4.5). Hence the chain consists 
of two uncoupled subchains. If x~~ = z ,  the relation 

(All  

can be interpreted as an area-preserving mapping in R 2 .  Analogously one obtains 
such a mapping for the odd positions. If there is a cycle of period N ’  for (Al )  and 
N ’  is even, then the cycle is in 1-1 correspondence to one of (1.10) via (4.6). One 
then gets equation (4.7) which is the same as (1.10) with a‘-  2 = 2a - 1. Hence cycles 
for a’ at S = 0 give cycles for the subchain at S = 0.5 and 

3 
z,+1 =(1-2a)zm-2zm-zm-1 

= a t - $ .  (A21 
A FP for (1.6), i.e. N = 1,  is only possible if both subchains are identical. Then 

one has again solutions A and B: {x, = 0)  and {x, = a }  with a 2  = -a -4, respectively. 
For cycles with an even period N one may write 

0 -1 o \  2 / 1 -2a - 6 ~ 2 ,  

Hence the eigenvalues are the solutions of 

where the coefficients xo and x1 are given by 

If the period of the subchain is N ’ =  N / 2 ,  then (A5) can be written as 

m = l  

where a’ is given by (A2) and y k  by (4.7). Then the four eigenvalues of DSN are 
the two for DS” in one subchain and two for the other one. 
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